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Abstract 

Assertions of set membership, such as Amy is an artist, 
should not be confused with those of set inclusion, such as All 
artists are bohemians. Membership is not a transitive relation, 
whereas inclusion is. Cognitive scientists have neglected the 
topic, and so we developed a theory of inferences yielding 
conclusions about membership, e.g., Amy is a bohemian, and 
about non-membership, Abbie is not an artist. The theory is 
implemented in a computer program, mReasoner, and it is 
based on mental models. The theory predicts that inferences 
that depend on a search for alternative models should be more 
difficult than those that do not. An experiment corroborated 
this prediction. The program contains a parameter, σ, which 
determines the probability of searching for alternative models. 
A search showed that its optimal value of .58 yielded a 
simulation that matched the participant’s accuracy in making 
inferences. We discuss the results as a step towards a unified 
theory of reasoning about sets. 
 
Keywords: quantifiers, reasoning, sets, syllogisms. 

Introduction 
Quantifiers raise problems for linguists in their syntax and 

semantics (e.g., Peters & Westerståhl, 2006; Steedman, 
2012). And they raise problems for cognitive scientists in 
their mental representation and roles in inference (e.g., 
Johnson-Laird, 2006; Oaksford & Chater, 2007; Rips, 
1994).  Our goal is to elucidate quantifiers by considering a 
neglected topic: assertions of set membership. Consider, for 
example, these three assertions: 

 
1. Viv is a judge. 
2. Judges are lawyers. 
3. Judges are appointed in different ways. 

 
Assertion (1) states that an individual is a member of a set, 
and assertion (2) states that one set is included in another 
set. Assertion (3) is about a set, but it states, not that it is 
included in another set, but that it is a member of another 
set, i.e., the set of judges is a member of the set of those 
who are appointed in different ways.  The difference matters 
because membership is not a transitive relation.  Hence, the 
following inference is not valid: 
 

4. Viv is a judge. 
    Judges are appointed in different ways. 
    Therefore, Viv is appointed in different ways. 

 
 

In contrast, this inference is valid: 
 

5. Viv is a judge. 
    Judges are lawyers. 
    Therefore, Viv is a lawyer. 

 
In formal logic, the second premise is equivalent to: anyone 
who is a judge is a lawyer, i.e., inclusion is defined in terms 
of membership.  The distinction between inferences (4) and 
(5) is therefore subtle, and psychological theories need to 
recognize the difference between them. 

A powerful way in logic to represent the meaning of 
quantifiers, such as “all judges”, is as sets of sets. This 
method was popularized by Montague (see the accounts in, 
e.g., Johnson-Laird, 1983; Partee, 1975; Peters & 
Westerståhl, 2006).  But, an alternative representation treats 
quantified assertions as stating relations between sets 
(Boole, 1854, Ch. XV). More recently, psychologists have 
had the same idea (e.g., Ceraso & Provitera, 1971; Geurts, 
2003; Johnson-Laird, 1970; Politzer, van der Henst, Luche, 
& Noveck, 2006). On this account, the assertion all judges 
are lawyers means that the set of judges is included in the 
set of lawyers. Likewise, the assertion no judges are 
inmates means that the intersection of the set of judges and 
the set of inmates is empty. The advantage of this treatment 
is that it readily extends to quantifiers that cannot be 
captured in standard logical accounts (such as Rips, 1994). 
The assertion most judges are men, contains a quantifier 
“most judges” that cannot be defined using the quantifiers 
of first-order predicate calculus (Barwise & Cooper, 1991). 
Its relational meaning is simple: the cardinality of the 
intersection of the set of judges and the set of males is 
greater than the cardinality of the set of judges that are not 
males (see Cohen & Nagel, 1934).  

So, how do naïve individuals reason about set 
membership? The aim of the present paper is to answer this 
question. Our answer is based on the theory of mental 
models. We accordingly begin with an outline of the theory 
from which we derive one principal prediction about such 
inferences. We report an experiment that corroborates this 
prediction. We use a computer program, mReasoner, to 
simulate performance, and show that the simulation 
provides a satisfactory fit with the experimental results. 
Finally, we draw some general conclusions about the 
psychology of set membership. 
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The model theory of set membership 
The mental model theory – the “model” theory, for short 

– applies to reasoning of many sorts, including reasoning 
based on quantifiers and on sentential connectives, such as 
if, or, and and (Johnson-Laird & Byrne, 1991) and 
reasoning about the subjective probability of unique events 
(Khemlani, Lotstein, & Johnson-Laird, 2012). Three main 
principles underlie the theory (Johnson-Laird, 2006). First, 
individuals use a representation of the meanings of 
assertions and their knowledge to construct mental models 
of each distinct sort of possibility to which the assertions 
refer. Second, mental models are iconic insofar as that is 
possible, i.e., the structure of a model corresponds to the 
structure of what it represents (see Peirce, 1931-1958, 
especially Vol. 4). Hence, a set is represented by a set of 
mental tokens in a model.  Third, more models mean more 
work: reasoners are likely to rely on their initial model for 
most inferences, and if a particular inference requires them 
to consider alternative models, it will be difficult.  
Reasoners accordingly use the meaning of premises – 
representations of their intensions – and their knowledge to 
construct mental models – representations of their 
extensions – of premises. Depending on whether a putative 
conclusion holds in all, most, or some of these models, they 
draw a conclusion that it is necessary, probable, or possible. 

According to the model theory, logical properties such as 
transitivity are emergent properties from models (e.g., 
Byrne & Johnson-Laird, 1989; Goodwin & Johnson-Laird, 
2005; Huttenlocher, 1968). Consider these contrasting 
examples: 

 
6. All the players are tall. 
7. All the players are equal in height. 
8. All the players are tall to varying degrees up to the     
    tallest. 

 
Given the further premise: 
 

9. Ann is one of the players. 
 
It follows from (6) that Ann is tall. But, what follows from 
(7) is not that Ann is equal in height, which doesn’t make 
sense, but rather that: 
 

10. Ann is equal in height to the other players. 
 
Likewise, what follows from (8) is not that Ann is tall to 
varying degrees, but rather that: 
 

11. Ann is tall and possibly the tallest of the players. 
 
The challenge to theories based on formal rules of inference 
or probabilistic considerations is to account for these 
inferences. In contrast, they emerge from mental models of 
the quantified premises. For example, a model of (8) 
represents iconically the set of players as varying in height 
up to the tallest. When (9) is used to update the model, Ann 

is added to a representation of an individual player. This 
player could be the one that is tallest, but needn’t be.  
Hence, only the modal conclusion in (11) follows.  This sort 
of machinery seems to be a prerequisite either for 
establishing the logical form of premises (pace Rips, 1994) 
or their appropriate probabilistic analysis (pace Oaksford & 
Chater, 2007). 

Our investigation begins with two sorts of inference that 
are fundamental. The first sort concerns set membership, as 
in the following premises: 

 
12. Ansel is an artist. 
      All artists are benefactors. 

 
They elicit the following sort of model in which each row 
represents a different individual: 
 
 Ansel artist benefactor 
  artist benefactor 
  artist benefactor 
 
It yields the valid conclusion: Ansel is a benefactor. 

The second sort of inference concerns non-membership of 
a set, such as: 

 
13. Igor is not a benefactor. 
      All artists are benefactors. 

 
They elicit the model: 
 
  Igor     ¬ benefactor  
  artist  benefactor  
  artist  benefactor  
  artist  benefactor  
 
where ‘¬’ denotes negation, i.e., the individual is not a 
benefactor. The corresponding conclusion, Igor is not an 
artist, is also valid. 

According to the theory, inferences such as (12) and (13) 
should be easy, because the correct response can be inferred 
from the initial mental model of the premises. The theory 
distinguishes such one-model inferences from multiple-
model inferences such as: 

 
14. Faye is not an artist. 
      All artists are benefactors. 

 
The premises yield the following model: 

 
  Faye ¬ artist  
  artist  benefactor  
  artist  benefactor  
  artist  benefactor  

 
This model yields the conclusion that Faye is not a 
benefactor. However, the conclusion is invalid, because the 
quantified assertion allows that benefactors may not be 
artists. Reasoners can modify their initial model (Bucciarelli 
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& Johnson-Laird, 1999; De Neys, Schaeken, & d’Ydewalle, 
2003; Johnson-Laird & Hasson, 2003; Neth & Johnson-
Laird, 1999) to yield a counterexample to the previous 
conclusion: 

 
  Faye ¬ artist  benefactor 
  artist  benefactor  
  artist  benefactor  
  artist  benefactor  
 
Such a modification calls for the additional resources of 
system 2, and so many reasoners should rely on their initial 
model. The theory therefore predicts that one-model 
inferences should be easier than multiple-model inferences. 
We now describe a study designed to test this hypothesis. 

Experiment 
The experiment tested the prediction of the model theory 

of set-membership inferences. A typical trial in the 
experiment was: 

 
15. Rachel is a baker. 
      All of the soldiers are bakers. 
      What, if anything, follows? 
 

The experiment examined eight different sorts of inference. 
The model theory classified four of the inferences as one-
model inferences and the other four as multiple-model 
inferences. 

Method 
Participants. Twenty-one participants completed the study 
on Mechanical Turk, an online platform hosted by 
Amazon.com that distributes experimental tasks to 
volunteers. Participants received monetary compensation for 
taking part in the study, none of them reported having had 
any training in logic, and they were all on their account 
native speakers of English. 
 
Design and materials. Each inference contained a premise 
about an individual (e.g., Rachel is a baker) and a quantified 
premise about all the members of a set  (e.g., All of the 
soldiers are bakers). The study manipulated three variables: 
1. whether the premise about the individual asserted 

membership or non-membership of a set; 2. whether the 
quantified premise asserted inclusion (“All”) or non-
inclusion (“None”) of one set within another; and 3. whether 
the set referred to in the premise about the individual 
matched the first or the second term in the quantified 
premise (see Table 1 below for the 8 different sorts of 
inference). The third variable yields two figures, as follows: 
 

Figure 1   Figure 2 
X is an A.   X is an A. 

All of the As are Bs.  All of the Bs are As. 
 
As Table 1 below shows, half of the inferences were one-
model inferences, and half of the inferences were multiple-
model inferences. The exploration of all permutations of the 
premises yielded an inevitable confound, such that all of the 
multiple-model problems were also those for which there 
existed no valid, non-trivial conclusion. The eight inferences 
were presented twice with different contents, and so 
participants carried out 16 inferences in total. The order of 
the premises was counterbalanced so that the membership 
premise was presented first for half the inferences and 
second for the other half. The contents were based on 
common names and common nouns referring to vocations. 
We devised a list of 16 pairs of such vocations, which we 
assigned at random to the inferences. The inferences were 
presented to each participant in a different random order. 
 
Procedure. The study was administered using an interface 
written in Ajax. The instructions stated that the task was to 
decide “what conclusions, if any, must also be true” given 
the truth of a pair of premises presented on the screen. On 
each trial, participants read the premises, and, when ready, 
they pressed a button marked “Next”, which replaced the 
premises with a question, “What, if anything, follows?” 
They responded by typing their answer out on a text box 
provided on the screen and then clicked a button to advance 
to the next inference. An independent coder classified 
participants’ typed responses as falling into one of three 
categories (given the schematic described earlier): 
 

i. x is a B. 
ii. x is not a B. 
iii. No valid conclusion. 

 
Set membership 

premise Monadic premise Figure Predicted response to 
“What follows?” Correct response Inference type Correct 

(%) 

x is an A All of the A are B 1 x is a B x is a B One-model 95% 
x is an A All of the B are A 2 x is a B No valid conclusion Multiple-model 47% 
x is an A None of the A are B 1 x is not a B x is not a B One-model 93% 
x is an A None of the B are A 2 x is not a B x is not a B One-model 88% 

x is not an A All of the A are B 1 x is not a B No valid conclusion Multiple-model 50% 
x is not an A All of the B are A 2 x is not a B x is not a B One-model 90% 
x is not an A None of the A are B 1 x is not a B No valid conclusion Multiple-model 83% 
x is not an A None of the B are A 2 x is not a B No valid conclusion Multiple-model 66% 

 

Table 1. The proportion of correct responses to the eight different inferences in the experiment. 
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Results and discussion 
The vast majority (99%) of participants’ responses fell into 
the three categories of responses as described in the 
previous section. The remaining responses were dropped 
from subsequent analyses. A small portion of the responses 
(9.5%) contained qualifications, e.g., a modal operator of 
the form, x is possibly a B. These responses occurred only 
in the case of multiple model inferences. The model theory 
accordingly accounts for them: individuals construct an 
initial model that supports a conclusion such as x is a B; 
they envisage an alternative model, and it refutes the 
conclusion; and so they weaken the conclusion to a modal 
claim, x is possibly a B. An analogous phenomenon occurs 
in syllogistic reasoning (e.g., Bucciarelli & Johnson-Laird, 
1999). We note that theories that do not rely on 
representations of possibilities fail to offer any ready 
account of this phenomenon. Nevertheless, we omitted 
modal responses from our analyses because it is unclear 
whether they should count as easy or difficult responses. 

Table 1 presents the percentage of correct responses for 
the eight different inferences. The experiment corroborated 
the theory’s main prediction: one-model inferences were 
reliably easier than multiple-model inferences (92% vs. 
51%, Wilcoxon test, z = 3.21, p = .001, Cliff’s δ = .56). 
Inferences from the quantifier none of the X were easier than 
those from all of the X (83% vs. 72%, Wilcoxon test, z = 
2.17, p = .03, Cliff’s δ = .33). The result may reflect the 
indeterminacy of all of the X are Y, which leaves open 
whether or not all of the Y are X.  No such indeterminacy 
occurs with None of the X are Y, which implies that None of 
the Y are X. Finally, we observed a marginal effect of 
figure, where figure 1 inferences were easier than figure 2 
inferences (73% vs. 68%, Wilcoxon test, z = 1.65, p = .10, 
Cliff’s δ = .20). Analogous effects of figure occur in 
syllogistic reasoning (Khemlani & Johnson-Laird, 2012).  

Of the three factors manipulated in the experiment (one 
vs. multiple models; all vs. none; and figure), which of them 
best predicts the difficulty of the inferences? To answer this 
question, we fit the data to a generalized mixed-effects 
model with a binomial error distribution and a logit link 
function using the lme4 package (Bates, Maechler, & 
Bolker, 2012) in R (R Core Team, 2013). The model took 
into account the three fixed effects described above and one 
random effect, i.e., the variance in the participants’ 
accuracy. The only significant predictor of performance was 
whether an inference required one or multiple models (b = 
3.31, SE = .42, p < .0001). These results again corroborate 
the model theory’s main prediction. 

In general, the experiment shows that naive individuals 
can make valid set membership deductions, but that they 
often err in inferences that depend on multiple models.  

 
Simulating set membership inferences 

We sought to simulate the results of the experiment by 
generating synthetic data from mReasoner v0.9, a unified 
computational implementation of the mental model theory 

of reasoning (Khemlani & Johnson-Laird, 2013), and 
matching it against the dataset from the experiment. The 
program implements three general systems: 

 
a) A linguistic system for parsing premises and building up 

intensional representations used in model building. This 
system’s purpose is to map an assertion’s syntax to an 
underlying semantics (the intension). 

b) An intuitive heuristic system (System 1) for building an 
initial mental model and for drawing inferences from it. 

c) A deliberative system (System 2) that interrogates the 
initial model to search for alternative models. This 
system can manipulate and update the representations 
created in System 1, and it can modify conclusions, but it 
too can fall prey to systematic errors (Johnson-Laird & 
Savary, 1999; Khemlani & Johnson-Laird, 2009). 

 
System 1 does not have access to working memory, whereas 
system 2 does. As a result, system 1 is faster and more 
prone to err than system 2. 

To simulate the non-determinism inherent in human 
reasoning, mReasoner is equipped with three parameters 
that govern how models are built and how the two 
inferential systems are engaged (Khemlani, Trafton, & 
Johnson-Laird, 2013). The first parameter stochastically 
varies the size of a mental model, i.e., the number of 
individuals it contains. This parameter can have no effect on 
the inferences in the present experiment. The second 
parameter varies the properties of the individuals in models, 
e.g., in the case of All of the A are B, it affects whether or 
not B’s that are not A’s occur in a model. But, this variable 
can also have no effect on the present inferences (see Table 
1). Hence, only the third parameter should affect them. This 
parameter, σ, sets the probability of a System 2 search for 
alternative models. Such a search can corroborate a putative 
conclusion or else provide a counterexample to it, i.e., a 
model in which the premises are true but the conclusion is 
false, and evidence shows that individuals are able to 
construct such counterexamples (Bucciarelli & Johnson-
Laird, 1999; De Neys, Schaeken, & d’Ydewalle, 2003; 
Johnson-Laird & Hasson, 2003). In general, a search for 
counterexamples does not guarantee a correct response, but 
for the simple inferences, such those in our experiment, the 
model assumes that the search for alternative models always 
yields a correct answer.  

An exhaustive exploration of the parameter space yielded 
an optimal σ value of .58, i.e., the system optimally modeled 
the data when it engaged a search for counterexamples 58% 
of the time. We generated synthetic data by running 1000 
simulations of the 8 inferences. Figure 1 shows the 
proportion of correct responses in the observations 
(histograms with error bars) and predictions (circles) in the 
study as a function of the inference. The computer model 
matched the participants’ performance in the experiment 
well (R2 = .75, RMSE = .11). The predictions of the 
computer model were in the 99th percentile relative to 
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Figure 1. Observed (histograms with error bars) and predicted 
(circles) proportions of correct response for the eight different 
inferences in the experiment. Error bars show 95% confidence 
intervals. Black circles indicate when the predictions fell within the 
confidence interval of the observed proportion of correct 
responses, whereas the red circle indicates a deviation from the 
prediction to the observation. The premises are abbreviated using 
the conventions of Scholastic logicians: Aab = “All As are Bs”, 
Eab = “No As are Bs” and likewise for Aba and Eba. 
 
hypothetical datasets (Khemlani & Trafton, under review). 
However, the model underestimated performance on one 
inference (see Figure 1). When the inference was eliminated 
from the analysis, the model performed optimally (R2 = 
.94). The system’s inability to capture the inference may be 
a result of the determinacy of None of the X are Y, which 
implies that None of the Y are X. This symmetry does not 
hold for All of the X are Y (see above), and it may affect 
how models are initially constructed. 

The computational model yielded a close fit to the data 
from the study, and successfully simulated the predicted 
difference between one- and multiple-model inferences. 

General Discussion 
Set membership is a fundamental concept in set theory and 
elementary mathematics. It is also a rudimentary cognitive 
behaviour in object naming (Riddoch & Humphreys, 1987) 
and categorization (Murphy, 2002). Many higher order 
inferences presuppose the ability to reason about 
membership and non-membership. It is no accident that in 
the very first Western treatise on formal logic, the Prior 
Analytics, Aristotle discusses the example (70a25): 
 

16. Pittacus is ambitious. 
Ambitious men are generous. 
Therefore, Pittacus is generous. 

 
Given that the second premise refers to the set of ambitious 
men, the inference is valid. Our experimental results show 
that logically untrained individuals can readily make this 
inference, but that they tend to make invalid inferences akin 
to: 
 

17. Pittacus is generous. 
      All ambitious men are generous. 
      Therefore, Pittacus is ambitious. 

The model theory explains their performance: when the 
initial model yields the correct inference, as in (16), they are 
usually accurate. But, when the initial model does not yield 
the correct inference, they often err. They need to engage 
system 2 in a search for an alternative model. When they do 
so, they tend to be correct, or they may modify their initial 
conclusion to allow that it concerns only a possibility, e.g., 
Pittacus is possibly ambitious. A computer program 
implementing the theory, mReasoner, replicated 
participants’ data by building and searching for models in 
the manner in which the theory posits. 

Unlike set inclusion, membership is not a transitive 
relation, and so it is critical to distinguish between them.  
But, as we illustrated earlier (examples 6-8), it is not easy to 
do so. It is difficult to see how theories of reasoning based 
on formal rules of inference (e.g., Rips, 1994) or on 
probabilistic heuristics (e.g., Oaksford & Chater, 2007) can 
account for the following sort of valid inference: 

 
18.  Pat is one of the pianists. 

All the pianists are virtuosi who play the Minute 
Waltz in varying times down to 60 seconds. 
Therefore, Pat is a virtuoso who possibly plays the 
Minute Waltz in 60 seconds. 

 
The conclusion that Pat is a virtuoso is an inference from set 
inclusion, whereas the inference about the speed of her 
performance is a complicated matter from the standpoint of 
formal logic. Nevertheless, it emerges from an iconic 
representation of the premises. 

Reasoning about membership is a precursor to higher 
order inference. When reasoners can make set membership 
inferences about individuals, they can cope in principle with 
inferences about properties (Johnson-Laird, 2006, Ch. 10; 
Khemlani & Johnson-Laird, 2012). When entities are in a 
set, they inherit any properties that hold for the complete 
set. Indeed, given a premise asserting that a property holds 
for an entire set, another premise based on almost any sort 
of affirmative quantifier yields a non-trivially valid 
inference, e.g.: 
 

19. All artists are benefactors. 
      Most minimalists are artists. 
      Therefore, most minimalists are benefactors. 
 

A corresponding model of the premises is as follows: 
 
 artist benefactor minimalist 
 artist benefactor minimalist 
 artist benefactor  
 
These inferences are known as “monotone increasing” 
(Barwise & Cooper, 1981), and theorists have sometimes 
proposed rules designed to capture them (Geurts, 2003). 
Yet, they are merely emergent consequences of iconic 
models. The exceptions to such inferences are quantifiers 
that fix the number of members of a set (so-called “non-
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monotone” quantifiers, see Barwise & Cooper, 1981). The 
following inference is therefore invalid: 
 

20. All artists are benefactors. 
      Exactly two minimalists are artists. 
      Therefore, exactly two minimalists are benefactors. 

 
The model theory predicts that naïve reasoners will 
sometimes make the inference because the initial model of 
the premises yields it.  But, those who search for an 
alternative model may find the following counterexample: 

 
 artist benefactor minimalist 
 artist benefactor minimalist 
 artist benefactor  
 ¬ artist benefactor minimalist 
 
Hence, three minimalists could be benefactors. 

In a similar way, when individuals are not members of a 
set, they are not in any of its subsets, e.g.:  

 
21. All artists are benefactors. 
      Most corporate raiders are not benefactors. 
      Therefore, most corporate raiders are not artists. 

 
These inferences are known as “monotone decreasing” 
(Barwise & Cooper, 1981). Once again, however, they are 
emergent properties of iconic models. 

We conclude that the model theory provides a sensible 
account of reasoning that hinges on set membership, which 
extends naturally to reasoning about set inclusion. It has the 
advantage that particular inferences of considerable logical 
complexity emerge from models of the premises. Inferences 
become difficult for reasoners only when the correct 
response depends on moving from the intuitions of system 1 
to the deliberations of system 2 and its construction of 
alternative models. People represent sets with sets of mental 
tokens, and this sort of representation allows them to treat 
quantified assertions in the way that Boole (1854) 
advocated, i.e., as relations between sets.  
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